\(\int x^6 (a+b x^3)^{3/2} \, dx\) [394]

   Optimal result
   Rubi [A] (verified)
   Mathematica [C] (verified)
   Maple [A] (verified)
   Fricas [C] (verification not implemented)
   Sympy [A] (verification not implemented)
   Maxima [F]
   Giac [F]
   Mupad [F(-1)]

Optimal result

Integrand size = 15, antiderivative size = 296 \[ \int x^6 \left (a+b x^3\right )^{3/2} \, dx=-\frac {432 a^3 x \sqrt {a+b x^3}}{21505 b^2}+\frac {54 a^2 x^4 \sqrt {a+b x^3}}{4301 b}+\frac {18}{391} a x^7 \sqrt {a+b x^3}+\frac {2}{23} x^7 \left (a+b x^3\right )^{3/2}+\frac {288\ 3^{3/4} \sqrt {2+\sqrt {3}} a^4 \left (\sqrt [3]{a}+\sqrt [3]{b} x\right ) \sqrt {\frac {a^{2/3}-\sqrt [3]{a} \sqrt [3]{b} x+b^{2/3} x^2}{\left (\left (1+\sqrt {3}\right ) \sqrt [3]{a}+\sqrt [3]{b} x\right )^2}} \operatorname {EllipticF}\left (\arcsin \left (\frac {\left (1-\sqrt {3}\right ) \sqrt [3]{a}+\sqrt [3]{b} x}{\left (1+\sqrt {3}\right ) \sqrt [3]{a}+\sqrt [3]{b} x}\right ),-7-4 \sqrt {3}\right )}{21505 b^{7/3} \sqrt {\frac {\sqrt [3]{a} \left (\sqrt [3]{a}+\sqrt [3]{b} x\right )}{\left (\left (1+\sqrt {3}\right ) \sqrt [3]{a}+\sqrt [3]{b} x\right )^2}} \sqrt {a+b x^3}} \]

[Out]

2/23*x^7*(b*x^3+a)^(3/2)-432/21505*a^3*x*(b*x^3+a)^(1/2)/b^2+54/4301*a^2*x^4*(b*x^3+a)^(1/2)/b+18/391*a*x^7*(b
*x^3+a)^(1/2)+288/21505*3^(3/4)*a^4*(a^(1/3)+b^(1/3)*x)*EllipticF((b^(1/3)*x+a^(1/3)*(1-3^(1/2)))/(b^(1/3)*x+a
^(1/3)*(1+3^(1/2))),I*3^(1/2)+2*I)*(1/2*6^(1/2)+1/2*2^(1/2))*((a^(2/3)-a^(1/3)*b^(1/3)*x+b^(2/3)*x^2)/(b^(1/3)
*x+a^(1/3)*(1+3^(1/2)))^2)^(1/2)/b^(7/3)/(b*x^3+a)^(1/2)/(a^(1/3)*(a^(1/3)+b^(1/3)*x)/(b^(1/3)*x+a^(1/3)*(1+3^
(1/2)))^2)^(1/2)

Rubi [A] (verified)

Time = 0.09 (sec) , antiderivative size = 296, normalized size of antiderivative = 1.00, number of steps used = 5, number of rules used = 3, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.200, Rules used = {285, 327, 224} \[ \int x^6 \left (a+b x^3\right )^{3/2} \, dx=-\frac {432 a^3 x \sqrt {a+b x^3}}{21505 b^2}+\frac {54 a^2 x^4 \sqrt {a+b x^3}}{4301 b}+\frac {288\ 3^{3/4} \sqrt {2+\sqrt {3}} a^4 \left (\sqrt [3]{a}+\sqrt [3]{b} x\right ) \sqrt {\frac {a^{2/3}-\sqrt [3]{a} \sqrt [3]{b} x+b^{2/3} x^2}{\left (\left (1+\sqrt {3}\right ) \sqrt [3]{a}+\sqrt [3]{b} x\right )^2}} \operatorname {EllipticF}\left (\arcsin \left (\frac {\sqrt [3]{b} x+\left (1-\sqrt {3}\right ) \sqrt [3]{a}}{\sqrt [3]{b} x+\left (1+\sqrt {3}\right ) \sqrt [3]{a}}\right ),-7-4 \sqrt {3}\right )}{21505 b^{7/3} \sqrt {\frac {\sqrt [3]{a} \left (\sqrt [3]{a}+\sqrt [3]{b} x\right )}{\left (\left (1+\sqrt {3}\right ) \sqrt [3]{a}+\sqrt [3]{b} x\right )^2}} \sqrt {a+b x^3}}+\frac {2}{23} x^7 \left (a+b x^3\right )^{3/2}+\frac {18}{391} a x^7 \sqrt {a+b x^3} \]

[In]

Int[x^6*(a + b*x^3)^(3/2),x]

[Out]

(-432*a^3*x*Sqrt[a + b*x^3])/(21505*b^2) + (54*a^2*x^4*Sqrt[a + b*x^3])/(4301*b) + (18*a*x^7*Sqrt[a + b*x^3])/
391 + (2*x^7*(a + b*x^3)^(3/2))/23 + (288*3^(3/4)*Sqrt[2 + Sqrt[3]]*a^4*(a^(1/3) + b^(1/3)*x)*Sqrt[(a^(2/3) -
a^(1/3)*b^(1/3)*x + b^(2/3)*x^2)/((1 + Sqrt[3])*a^(1/3) + b^(1/3)*x)^2]*EllipticF[ArcSin[((1 - Sqrt[3])*a^(1/3
) + b^(1/3)*x)/((1 + Sqrt[3])*a^(1/3) + b^(1/3)*x)], -7 - 4*Sqrt[3]])/(21505*b^(7/3)*Sqrt[(a^(1/3)*(a^(1/3) +
b^(1/3)*x))/((1 + Sqrt[3])*a^(1/3) + b^(1/3)*x)^2]*Sqrt[a + b*x^3])

Rule 224

Int[1/Sqrt[(a_) + (b_.)*(x_)^3], x_Symbol] :> With[{r = Numer[Rt[b/a, 3]], s = Denom[Rt[b/a, 3]]}, Simp[2*Sqrt
[2 + Sqrt[3]]*(s + r*x)*(Sqrt[(s^2 - r*s*x + r^2*x^2)/((1 + Sqrt[3])*s + r*x)^2]/(3^(1/4)*r*Sqrt[a + b*x^3]*Sq
rt[s*((s + r*x)/((1 + Sqrt[3])*s + r*x)^2)]))*EllipticF[ArcSin[((1 - Sqrt[3])*s + r*x)/((1 + Sqrt[3])*s + r*x)
], -7 - 4*Sqrt[3]], x]] /; FreeQ[{a, b}, x] && PosQ[a]

Rule 285

Int[((c_.)*(x_))^(m_.)*((a_) + (b_.)*(x_)^(n_))^(p_), x_Symbol] :> Simp[(c*x)^(m + 1)*((a + b*x^n)^p/(c*(m + n
*p + 1))), x] + Dist[a*n*(p/(m + n*p + 1)), Int[(c*x)^m*(a + b*x^n)^(p - 1), x], x] /; FreeQ[{a, b, c, m}, x]
&& IGtQ[n, 0] && GtQ[p, 0] && NeQ[m + n*p + 1, 0] && IntBinomialQ[a, b, c, n, m, p, x]

Rule 327

Int[((c_.)*(x_))^(m_)*((a_) + (b_.)*(x_)^(n_))^(p_), x_Symbol] :> Simp[c^(n - 1)*(c*x)^(m - n + 1)*((a + b*x^n
)^(p + 1)/(b*(m + n*p + 1))), x] - Dist[a*c^n*((m - n + 1)/(b*(m + n*p + 1))), Int[(c*x)^(m - n)*(a + b*x^n)^p
, x], x] /; FreeQ[{a, b, c, p}, x] && IGtQ[n, 0] && GtQ[m, n - 1] && NeQ[m + n*p + 1, 0] && IntBinomialQ[a, b,
 c, n, m, p, x]

Rubi steps \begin{align*} \text {integral}& = \frac {2}{23} x^7 \left (a+b x^3\right )^{3/2}+\frac {1}{23} (9 a) \int x^6 \sqrt {a+b x^3} \, dx \\ & = \frac {18}{391} a x^7 \sqrt {a+b x^3}+\frac {2}{23} x^7 \left (a+b x^3\right )^{3/2}+\frac {1}{391} \left (27 a^2\right ) \int \frac {x^6}{\sqrt {a+b x^3}} \, dx \\ & = \frac {54 a^2 x^4 \sqrt {a+b x^3}}{4301 b}+\frac {18}{391} a x^7 \sqrt {a+b x^3}+\frac {2}{23} x^7 \left (a+b x^3\right )^{3/2}-\frac {\left (216 a^3\right ) \int \frac {x^3}{\sqrt {a+b x^3}} \, dx}{4301 b} \\ & = -\frac {432 a^3 x \sqrt {a+b x^3}}{21505 b^2}+\frac {54 a^2 x^4 \sqrt {a+b x^3}}{4301 b}+\frac {18}{391} a x^7 \sqrt {a+b x^3}+\frac {2}{23} x^7 \left (a+b x^3\right )^{3/2}+\frac {\left (432 a^4\right ) \int \frac {1}{\sqrt {a+b x^3}} \, dx}{21505 b^2} \\ & = -\frac {432 a^3 x \sqrt {a+b x^3}}{21505 b^2}+\frac {54 a^2 x^4 \sqrt {a+b x^3}}{4301 b}+\frac {18}{391} a x^7 \sqrt {a+b x^3}+\frac {2}{23} x^7 \left (a+b x^3\right )^{3/2}+\frac {288\ 3^{3/4} \sqrt {2+\sqrt {3}} a^4 \left (\sqrt [3]{a}+\sqrt [3]{b} x\right ) \sqrt {\frac {a^{2/3}-\sqrt [3]{a} \sqrt [3]{b} x+b^{2/3} x^2}{\left (\left (1+\sqrt {3}\right ) \sqrt [3]{a}+\sqrt [3]{b} x\right )^2}} F\left (\sin ^{-1}\left (\frac {\left (1-\sqrt {3}\right ) \sqrt [3]{a}+\sqrt [3]{b} x}{\left (1+\sqrt {3}\right ) \sqrt [3]{a}+\sqrt [3]{b} x}\right )|-7-4 \sqrt {3}\right )}{21505 b^{7/3} \sqrt {\frac {\sqrt [3]{a} \left (\sqrt [3]{a}+\sqrt [3]{b} x\right )}{\left (\left (1+\sqrt {3}\right ) \sqrt [3]{a}+\sqrt [3]{b} x\right )^2}} \sqrt {a+b x^3}} \\ \end{align*}

Mathematica [C] (verified)

Result contains higher order function than in optimal. Order 5 vs. order 4 in optimal.

Time = 5.13 (sec) , antiderivative size = 79, normalized size of antiderivative = 0.27 \[ \int x^6 \left (a+b x^3\right )^{3/2} \, dx=\frac {2 x \sqrt {a+b x^3} \left (-\left (\left (8 a-17 b x^3\right ) \left (a+b x^3\right )^2\right )+\frac {8 a^3 \operatorname {Hypergeometric2F1}\left (-\frac {3}{2},\frac {1}{3},\frac {4}{3},-\frac {b x^3}{a}\right )}{\sqrt {1+\frac {b x^3}{a}}}\right )}{391 b^2} \]

[In]

Integrate[x^6*(a + b*x^3)^(3/2),x]

[Out]

(2*x*Sqrt[a + b*x^3]*(-((8*a - 17*b*x^3)*(a + b*x^3)^2) + (8*a^3*Hypergeometric2F1[-3/2, 1/3, 4/3, -((b*x^3)/a
)])/Sqrt[1 + (b*x^3)/a]))/(391*b^2)

Maple [A] (verified)

Time = 3.83 (sec) , antiderivative size = 334, normalized size of antiderivative = 1.13

method result size
risch \(-\frac {2 x \left (-935 b^{3} x^{9}-1430 a \,b^{2} x^{6}-135 a^{2} b \,x^{3}+216 a^{3}\right ) \sqrt {b \,x^{3}+a}}{21505 b^{2}}-\frac {288 i a^{4} \sqrt {3}\, \left (-a \,b^{2}\right )^{\frac {1}{3}} \sqrt {\frac {i \left (x +\frac {\left (-a \,b^{2}\right )^{\frac {1}{3}}}{2 b}-\frac {i \sqrt {3}\, \left (-a \,b^{2}\right )^{\frac {1}{3}}}{2 b}\right ) \sqrt {3}\, b}{\left (-a \,b^{2}\right )^{\frac {1}{3}}}}\, \sqrt {\frac {x -\frac {\left (-a \,b^{2}\right )^{\frac {1}{3}}}{b}}{-\frac {3 \left (-a \,b^{2}\right )^{\frac {1}{3}}}{2 b}+\frac {i \sqrt {3}\, \left (-a \,b^{2}\right )^{\frac {1}{3}}}{2 b}}}\, \sqrt {-\frac {i \left (x +\frac {\left (-a \,b^{2}\right )^{\frac {1}{3}}}{2 b}+\frac {i \sqrt {3}\, \left (-a \,b^{2}\right )^{\frac {1}{3}}}{2 b}\right ) \sqrt {3}\, b}{\left (-a \,b^{2}\right )^{\frac {1}{3}}}}\, F\left (\frac {\sqrt {3}\, \sqrt {\frac {i \left (x +\frac {\left (-a \,b^{2}\right )^{\frac {1}{3}}}{2 b}-\frac {i \sqrt {3}\, \left (-a \,b^{2}\right )^{\frac {1}{3}}}{2 b}\right ) \sqrt {3}\, b}{\left (-a \,b^{2}\right )^{\frac {1}{3}}}}}{3}, \sqrt {\frac {i \sqrt {3}\, \left (-a \,b^{2}\right )^{\frac {1}{3}}}{b \left (-\frac {3 \left (-a \,b^{2}\right )^{\frac {1}{3}}}{2 b}+\frac {i \sqrt {3}\, \left (-a \,b^{2}\right )^{\frac {1}{3}}}{2 b}\right )}}\right )}{21505 b^{3} \sqrt {b \,x^{3}+a}}\) \(334\)
default \(\frac {2 b \,x^{10} \sqrt {b \,x^{3}+a}}{23}+\frac {52 a \,x^{7} \sqrt {b \,x^{3}+a}}{391}+\frac {54 a^{2} x^{4} \sqrt {b \,x^{3}+a}}{4301 b}-\frac {432 a^{3} x \sqrt {b \,x^{3}+a}}{21505 b^{2}}-\frac {288 i a^{4} \sqrt {3}\, \left (-a \,b^{2}\right )^{\frac {1}{3}} \sqrt {\frac {i \left (x +\frac {\left (-a \,b^{2}\right )^{\frac {1}{3}}}{2 b}-\frac {i \sqrt {3}\, \left (-a \,b^{2}\right )^{\frac {1}{3}}}{2 b}\right ) \sqrt {3}\, b}{\left (-a \,b^{2}\right )^{\frac {1}{3}}}}\, \sqrt {\frac {x -\frac {\left (-a \,b^{2}\right )^{\frac {1}{3}}}{b}}{-\frac {3 \left (-a \,b^{2}\right )^{\frac {1}{3}}}{2 b}+\frac {i \sqrt {3}\, \left (-a \,b^{2}\right )^{\frac {1}{3}}}{2 b}}}\, \sqrt {-\frac {i \left (x +\frac {\left (-a \,b^{2}\right )^{\frac {1}{3}}}{2 b}+\frac {i \sqrt {3}\, \left (-a \,b^{2}\right )^{\frac {1}{3}}}{2 b}\right ) \sqrt {3}\, b}{\left (-a \,b^{2}\right )^{\frac {1}{3}}}}\, F\left (\frac {\sqrt {3}\, \sqrt {\frac {i \left (x +\frac {\left (-a \,b^{2}\right )^{\frac {1}{3}}}{2 b}-\frac {i \sqrt {3}\, \left (-a \,b^{2}\right )^{\frac {1}{3}}}{2 b}\right ) \sqrt {3}\, b}{\left (-a \,b^{2}\right )^{\frac {1}{3}}}}}{3}, \sqrt {\frac {i \sqrt {3}\, \left (-a \,b^{2}\right )^{\frac {1}{3}}}{b \left (-\frac {3 \left (-a \,b^{2}\right )^{\frac {1}{3}}}{2 b}+\frac {i \sqrt {3}\, \left (-a \,b^{2}\right )^{\frac {1}{3}}}{2 b}\right )}}\right )}{21505 b^{3} \sqrt {b \,x^{3}+a}}\) \(355\)
elliptic \(\frac {2 b \,x^{10} \sqrt {b \,x^{3}+a}}{23}+\frac {52 a \,x^{7} \sqrt {b \,x^{3}+a}}{391}+\frac {54 a^{2} x^{4} \sqrt {b \,x^{3}+a}}{4301 b}-\frac {432 a^{3} x \sqrt {b \,x^{3}+a}}{21505 b^{2}}-\frac {288 i a^{4} \sqrt {3}\, \left (-a \,b^{2}\right )^{\frac {1}{3}} \sqrt {\frac {i \left (x +\frac {\left (-a \,b^{2}\right )^{\frac {1}{3}}}{2 b}-\frac {i \sqrt {3}\, \left (-a \,b^{2}\right )^{\frac {1}{3}}}{2 b}\right ) \sqrt {3}\, b}{\left (-a \,b^{2}\right )^{\frac {1}{3}}}}\, \sqrt {\frac {x -\frac {\left (-a \,b^{2}\right )^{\frac {1}{3}}}{b}}{-\frac {3 \left (-a \,b^{2}\right )^{\frac {1}{3}}}{2 b}+\frac {i \sqrt {3}\, \left (-a \,b^{2}\right )^{\frac {1}{3}}}{2 b}}}\, \sqrt {-\frac {i \left (x +\frac {\left (-a \,b^{2}\right )^{\frac {1}{3}}}{2 b}+\frac {i \sqrt {3}\, \left (-a \,b^{2}\right )^{\frac {1}{3}}}{2 b}\right ) \sqrt {3}\, b}{\left (-a \,b^{2}\right )^{\frac {1}{3}}}}\, F\left (\frac {\sqrt {3}\, \sqrt {\frac {i \left (x +\frac {\left (-a \,b^{2}\right )^{\frac {1}{3}}}{2 b}-\frac {i \sqrt {3}\, \left (-a \,b^{2}\right )^{\frac {1}{3}}}{2 b}\right ) \sqrt {3}\, b}{\left (-a \,b^{2}\right )^{\frac {1}{3}}}}}{3}, \sqrt {\frac {i \sqrt {3}\, \left (-a \,b^{2}\right )^{\frac {1}{3}}}{b \left (-\frac {3 \left (-a \,b^{2}\right )^{\frac {1}{3}}}{2 b}+\frac {i \sqrt {3}\, \left (-a \,b^{2}\right )^{\frac {1}{3}}}{2 b}\right )}}\right )}{21505 b^{3} \sqrt {b \,x^{3}+a}}\) \(355\)

[In]

int(x^6*(b*x^3+a)^(3/2),x,method=_RETURNVERBOSE)

[Out]

-2/21505*x*(-935*b^3*x^9-1430*a*b^2*x^6-135*a^2*b*x^3+216*a^3)*(b*x^3+a)^(1/2)/b^2-288/21505*I*a^4/b^3*3^(1/2)
*(-a*b^2)^(1/3)*(I*(x+1/2/b*(-a*b^2)^(1/3)-1/2*I*3^(1/2)/b*(-a*b^2)^(1/3))*3^(1/2)*b/(-a*b^2)^(1/3))^(1/2)*((x
-1/b*(-a*b^2)^(1/3))/(-3/2/b*(-a*b^2)^(1/3)+1/2*I*3^(1/2)/b*(-a*b^2)^(1/3)))^(1/2)*(-I*(x+1/2/b*(-a*b^2)^(1/3)
+1/2*I*3^(1/2)/b*(-a*b^2)^(1/3))*3^(1/2)*b/(-a*b^2)^(1/3))^(1/2)/(b*x^3+a)^(1/2)*EllipticF(1/3*3^(1/2)*(I*(x+1
/2/b*(-a*b^2)^(1/3)-1/2*I*3^(1/2)/b*(-a*b^2)^(1/3))*3^(1/2)*b/(-a*b^2)^(1/3))^(1/2),(I*3^(1/2)/b*(-a*b^2)^(1/3
)/(-3/2/b*(-a*b^2)^(1/3)+1/2*I*3^(1/2)/b*(-a*b^2)^(1/3)))^(1/2))

Fricas [C] (verification not implemented)

Result contains higher order function than in optimal. Order 9 vs. order 4.

Time = 0.09 (sec) , antiderivative size = 69, normalized size of antiderivative = 0.23 \[ \int x^6 \left (a+b x^3\right )^{3/2} \, dx=\frac {2 \, {\left (432 \, a^{4} \sqrt {b} {\rm weierstrassPInverse}\left (0, -\frac {4 \, a}{b}, x\right ) + {\left (935 \, b^{4} x^{10} + 1430 \, a b^{3} x^{7} + 135 \, a^{2} b^{2} x^{4} - 216 \, a^{3} b x\right )} \sqrt {b x^{3} + a}\right )}}{21505 \, b^{3}} \]

[In]

integrate(x^6*(b*x^3+a)^(3/2),x, algorithm="fricas")

[Out]

2/21505*(432*a^4*sqrt(b)*weierstrassPInverse(0, -4*a/b, x) + (935*b^4*x^10 + 1430*a*b^3*x^7 + 135*a^2*b^2*x^4
- 216*a^3*b*x)*sqrt(b*x^3 + a))/b^3

Sympy [A] (verification not implemented)

Time = 0.65 (sec) , antiderivative size = 39, normalized size of antiderivative = 0.13 \[ \int x^6 \left (a+b x^3\right )^{3/2} \, dx=\frac {a^{\frac {3}{2}} x^{7} \Gamma \left (\frac {7}{3}\right ) {{}_{2}F_{1}\left (\begin {matrix} - \frac {3}{2}, \frac {7}{3} \\ \frac {10}{3} \end {matrix}\middle | {\frac {b x^{3} e^{i \pi }}{a}} \right )}}{3 \Gamma \left (\frac {10}{3}\right )} \]

[In]

integrate(x**6*(b*x**3+a)**(3/2),x)

[Out]

a**(3/2)*x**7*gamma(7/3)*hyper((-3/2, 7/3), (10/3,), b*x**3*exp_polar(I*pi)/a)/(3*gamma(10/3))

Maxima [F]

\[ \int x^6 \left (a+b x^3\right )^{3/2} \, dx=\int { {\left (b x^{3} + a\right )}^{\frac {3}{2}} x^{6} \,d x } \]

[In]

integrate(x^6*(b*x^3+a)^(3/2),x, algorithm="maxima")

[Out]

integrate((b*x^3 + a)^(3/2)*x^6, x)

Giac [F]

\[ \int x^6 \left (a+b x^3\right )^{3/2} \, dx=\int { {\left (b x^{3} + a\right )}^{\frac {3}{2}} x^{6} \,d x } \]

[In]

integrate(x^6*(b*x^3+a)^(3/2),x, algorithm="giac")

[Out]

integrate((b*x^3 + a)^(3/2)*x^6, x)

Mupad [F(-1)]

Timed out. \[ \int x^6 \left (a+b x^3\right )^{3/2} \, dx=\int x^6\,{\left (b\,x^3+a\right )}^{3/2} \,d x \]

[In]

int(x^6*(a + b*x^3)^(3/2),x)

[Out]

int(x^6*(a + b*x^3)^(3/2), x)